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Abstract

Thyroid hormones are essential for proper neurodevelopment in early life. There is evidence that 

exposure to polybrominated diphenyl ethers (PBDEs) affects thyroid function, but previous studies 

have been inconsistent, and no studies among children have been conducted in the United States 

where PBDE levels are particularly high. Serum levels of seven PBDE congeners and thyroid 

hormones and other thyroid parameters were measured in 80 children aged 1-5 years from the 

southeastern United States between 2011-2012. Parents of the children completed questionnaires 

with details on demographics and behaviors. Multivariate linear regression models were used to 

estimate the associations between serum PBDE levels, expressed as quartiles and as log-

transformed continuous variables, and markers of thyroid function. BDE-47, 99, 100 and 153 were 

detected in >60% of samples, and were summed (ΣPBDE). PBDE congeners and ΣPBDE were 

positively associated with thyroid-stimulating hormone (TSH). A log-unit increase in ΣPBDE was 

associated with a 22.1% increase in TSH (95% CI: 2.0%, 47.7%). Compared with children in the 
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lowest quartile of ΣPBDE exposure, children in higher quartiles had greater TSH concentrations 

as modelled on the log-scale (second quartile: β=0.32, 95% confidence interval (CI): -0.09, 0.74; 

third quartile: β=0.44, 95% CI: 0.04, 0.85; and fourth quartile: β=0.49, 95% CI: 0.09, 0.89). There 

was also a tendency toward lower total T4 and higher free T3 with increasing PBDE exposure. 

Results suggest that exposure to PBDEs during childhood subclinically disrupts thyroid hormone 

function, with impacts in the direction of hypothyroidism.
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1. Introduction

Polybrominated diphenyl ethers (PBDEs) are persistent chemicals that are used as flame 

retardants in the manufacturing of various consumer products such as furniture, 

polyurethane foams, and textiles (Abbasi et al., 2015; Betts, 2015). These compounds are 

not chemically bound to the products they are used in (Birnbaum and Staskal, 2004), so they 

are released into the environment where they eventually become incorporated into house 

dust. This leads to human uptake primarily through oral routes, and they are stored long-

term in lipid-rich tissues (Johnson-Restrepo and Kannan, 2009). Half-lives in the human 

body range from 2-7 years with lower brominated congeners with 6 bromines or less being 

the most persistent (Geyer HJ et al., 2004).

Data from the National Health and Nutrition Examination Survey (NHANES) have shown 

that 100% of people in the U.S. have detectable levels of at least one PBDE congener in 

their blood (Sjodin et al., 2014a). Although these compounds are ubiquitous in the 

environment, certain populations are disproportionately exposed. Studies have consistently 

shown that children have the highest serum levels of PBDEs compared with other age 

groups (Lunder et al., 2010), peaking between 2-6 years (Sjodin et al., 2014b). This is 

thought to be due primarily to increased dust ingestion in the first years of life, because of 

time spent on the floor and frequent hand-to-mouth behavior (Jones-Otazo et al., 2005). 

Recent breastfeeding may also contribute to these high levels (Stapleton et al., 2012).

Thyroid function regulates basic metabolism and growth, but it is particularly essential for 

healthy brain development in young children (Braverman and Cooper, 2012). Specifically, 

severe hypothyroidism (e.g. increased thyroid-stimulating hormone (TSH), decreased 

thyroxine (T4)) in early childhood can lead to intellectual disability, language and memory 

deficits, and poor fine motor, auditory and executive processing skills (Porterfield and 

Hendrich, 1993; Williams, 2008; Zoeller and Rovet, 2004). Due to the structural similarities 

between PBDEs and the two major thyroid hormones, T4 and triiodothyronine (T3) 

(Ibhazehiebo et al., 2011), much research has focused on the potential for PBDEs and their 

metabolites to interfere with thyroid function. Thyroid hormone concentrations are regulated 

by the hypothalamic-pituitary-thyroid axis, a complex system that functions as a negative 

feedback loop (Jameson and De Groot, 2010). TSH is produced by the pituitary gland in 

response to low T4 levels which stimulates the thyroid to secrete more T4; conversely TSH 
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production is down-regulated when circulating T4 levels are high. PBDEs may disrupt this 

system at various points (Zoeller et al., 2007).

Many experimental studies in rats and mice have shown that PBDEs induce decreases in 

total T4 and its metabolically active unbound form, free T4 (Darnerud and Thuvander, 1998; 

Hallgren and Darnerud, 2002; Stoker et al., 2004; Zhou et al., 2002). Epidemiologic studies 

have also shown that PBDE exposure in humans is associated with thyroid hormone 

concentrations, but results have been inconsistent among adults (Dallaire et al., 2009; Turyk 

et al., 2008) and pregnant women (Abdelouahab et al., 2013; Chevrier et al., 2010). 

However, despite the higher burden of exposure among young children, few studies have 

been conducted among this age group (Gascon et al., 2011; Xu et al., 2014), and none have 

been conducted in the United States, where PBDE levels are particularly high due to 

historically strict flammability standards (Birnbaum and Staskal, 2004). However, multiple 

studies among young children have found that PBDEs are associated with neurological and 

cognitive deficits (Herbstman and Mall, 2014), and thyroid disruption could be a mediating 

pathway.

Given the potential for neurodevelopmental impacts of thyroid disruption among young 

children, it is important to quantify the risks associated with this elevated and chronic 

exposure specifically among young children. The purpose of this study was to evaluate the 

associations between specific and summed PBDE congeners and thyroid function in a cohort 

of young children from the southeastern United States.

2. Materials and Methods

2.1. Study Population

Study participants were recruited between 2011-2012 from the population of pediatric 

anesthesia patients, aged 1 to 5 years, at Children’s Healthcare of Atlanta who were 

undergoing general anesthesia for myringotomy, adenoidectomy, tonsillectomy and/or 

bronchoscopy. Children were healthy at the time of surgery and were not taking any 

medications with known endocrine impacts. Informed consent was obtained from a parent 

on the day of surgery.

A parent of each child completed a questionnaire which included information on the child as 

well as the parent(s) such as age, race and ethnicity, family history of thyroid or other 

endocrine or auto-immune diagnoses, breastfeeding history and duration, birth order, hours 

per day spent inside the home, residence time at the current residential address, medications, 

and parental occupations and smoking. A research nurse recorded the child’s height, weight, 

and insurance status.

2.2. Data Collection

After the surgical procedure(s) and while the child was still under general anesthesia, the 

research nurse collected up to 15 mL of blood in two red-top Vacutainer tubes. Tubes were 

inverted several times, stored in a cooler, and transferred the same day to the lab. The 

samples were centrifuged and serum was then aliquoted into two storage vials, one for 
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PBDE analysis and the other for thyroid hormone analysis, and stored at -20°C prior to 

analysis.

Prepared serum samples were analyzed for seven PBDE congeners (BDE-47, BDE-85, 

BDE-99, BDE-100, BDE-153, BDE-154, and BDE-209) using gas chromatography-tandem 

mass spectrometry (GS-MS/MS) or GC-MS (only for BDE-209) at the Laboratory for 

Exposure Assessment and Method Development in Environmental Research (LEADER) at 

Emory University’s Rollins School of Public Health (Agilent Technologies, Santa Clara, 

CA; 7000 GC/MS Triple Quad). The method limits of detection (LODs) for each congener 

(shown in Table 1) were defined as three times the standard deviation of the amount 

measured in blanks plus the blank value or the lowest standard measured above that 

calculated value that had a signal: noise ratio of greater than 3. Details on the laboratory 

methods are presented in the Supplemental Material (See Supplemental Material, p. 1-2).

Total serum triglyceride content was measured using BioVision Triglyceride Quantification 

Assay Kit (BioVision Research Products; Mountain View, CA), and total cholesterol content 

was measured using Cayman Cholesterol Assay Kit (Cayman Chemical Company; Ann 

Arbor, MI) according to manufacturer instructions. Total lipids were calculated using 

conventional methods based on these individual lipid components (Phillips et al., 1989).

2.3. Hormone Analyses

Thyroid hormones and other thyroid markers were analyzed at the Biomarkers Core 

Laboratory at Emory University’s Yerkes National Primate Research Center. TSH, free T4, 

and T3 uptake, a marker of binding protein saturation by T4, were analyzed by ELISA (IBL 

International; Minneapolis, MN). Total T4, total T3, and free T3 were measured by 

radioimmunoassay (Siemens; Los Angeles, CA) and reverse T3 (rT3), the inactive T3 isomer 

resulting from deiodination of T4, and thyroid antibodies (thyroglobulin autoantibody 

(TgAb) and antibodies to thyroid peroxidase (anti-TPO)) were analyzed by 

radioimmunoassay (Alpco; Salem, NH). All assays were conducted in duplicate. Inter and 

intra-assay coefficients of variation are reported in Supplemental Table 2. We refer to this 

complete set of measures as thyroid parameters.

2.4. Statistical Analyses

PBDE measurements below the LOD were imputed using a distribution-based maximum 

likelihood technique (Chen et al., 2011; Lubin et al., 2004). For each congener that had 

values below the LOD, we assumed a lognormal probability distribution based on quantile-

quantile plots that compared the observed and expected quantiles of the exposure that 

corresponded to data above the LOD and truncated log-normal distributions, respectively 

(Lyles et al., 2001b). We then generated maximum likelihood estimates of the log-scale 

mean and variance (μ, σ2) assuming lognormal probability distributions. In order to 

incorporate uncertainty in the maximum likelihood estimates, we generated ten sets of 

distribution parameters and imputed values below the LOD based on each set of parameters, 

creating ten complete datasets (Chen et al., 2011; Lyles et al., 2001a). Based on congeners 

with detection frequencies > 60% (BDE-47, 99, 100 and 153), we created a sum (ΣPBDE). 

Jacobson et al. Page 4

Environ Res. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also considered this sum on the molar basis, which takes into account the different 

molecular weights of each homolog.

We explored the distribution of exposure in our study population by computing geometric 

means (GM) of ΣPBDE for each covariate stratum. We fit separate multivariable linear 

regression models for each PBDE congener with a detection frequency > 60% (BDE-47, 99, 

100 and 153) and the sums of these congeners, both as natural log-transformed continuous 

variables and as quartiles. Modeling exposure using quantiles allows for the examination 

patterns of association across the range of exposure and the potential for non-linear dose 

response. Due to the debate in the literature regarding how to adjust for serum lipids, we 

performed this in two ways. In our primary analysis, we expressed PBDEs on the wet weight 

basis (ng/mL serum) and controlled for lipids as a covariate, and we repeated all analyses 

with PBDEs on the lipid basis (ng/g lipid) in supplemental analyses. In analyses with each 

congener that was subject to left-censoring by an LOD as well as ΣPBDE, we used the SAS 

procedure PROC MIANALYZE to generate summary regression coefficients, standard 

errors, and 95% confidence intervals (SAS, Cary, NC) (Little and Rubin, 2002).

TSH was natural log-transformed because it was right skewed, and because there is evidence 

to suggest that TSH concentrations change on the logarithmic scale as opposed to the 

additive scale (Demmers and Spencer, 2002). We fit separate linear regression models for 

each thyroid parameter. All regression models controlled for covariates that were identified a 
priori based on the literature and our conceptualized directed acyclic graph: lipids, sex, age 

(1; 2; 3; 4; 5 years old), body mass index z-score (<0; ≥0-≤1; >1) breastfeeding history (0 

months; <6 months; ≥6 months), time of blood collection (7am-9am; 9am-12pm; 

12pm-3pm), race/ethnicity (non-Hispanic black; non-Hispanic white; Hispanic/mixed race/

other), and insurance status (Medicaid; private insurance). We evaluated the influence of 

each covariate on the estimated PBDE β-coefficients and standard errors. In models for T3 

uptake, we additionally controlled for total T4 given that the interpretation of this marker 

depends on T4 concentrations (Dunlap, 1990). Our study population included two sets of 

siblings, so we used generalized estimating equations with robust standard errors to account 

for the potential correlated nature of their outcomes.

We fit logistic regression models in order to estimate the association between PBDE 

congeners and detection of thyroid antibodies. Because TgAb was detected in less than 

<50% of samples, we dichotomized it as detected vs. undetected. However, because only 

two children had an anti-TPO result greater than the laboratory sensitivity cut-off of 30 

U/mL, we did not analyze it further.

In sensitivity analyses, we evaluated the influence of extreme thyroid parameter values by 

excluding observations that were outside of kit reference ranges. All statistical analyses were 

performed using SAS Version 9.4. Study protocols were approved by the Institutional 

Review Board at Emory University.
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3. Results

The parents of 95 children were approached and asked to participate in the study, and 94% 

consented (n=89). However, nine children were subsequently excluded due to difficulty 

obtaining sufficient blood volumes, failing to meet eligibility criteria, or not returning 

questionnaires, yielding the final sample size of 80.

Detection frequencies varied by PBDE congener (Table 1 and Supplemental Table 1). 

BDE-85, 154 and 209 were detected in less than 20% of samples and were excluded from 

further analyses. BDE-47 was the main contributor to ΣPBDE, followed by BDE-99, 153, 

and 100. Congeners BDE-47, 99, and 100 were highly correlated (r=0.7-0.9; p<0.0001), and 

correlations with BDE-153 were slightly lower (r=0.4-0.5; p<0.0001) (data not shown).

Table 2 shows the characteristics of the study population and the GM ΣPBDE levels and 

corresponding geometric standard deviations for each covariate stratum. The study 

population was racially diverse, with approximately equal numbers of black (n=33) and 

white children (n=31), and the majority on Medicaid (63.8%). Children had their blood 

drawn throughout the day, but samples drawn between 7-9 am had lower serum ΣPBDE 

concentrations, which may have been due to fasting, but this was not explained by lipid 

levels alone because the GM lipid-standardized ΣPBDE was low as well (ΣPBDE= 0.20 

ng/mL; 49 ng/g lipid).

PBDE congeners and ΣPBDE were positively associated with TSH concentrations (Table 3). 

On average, for a log-ng/mL increase in a given PBDE congener, estimates ranged from 

increases of 5.1% (95% CI: -11.6%, 24.6%) for BDE-153 to 22.1% for BDE-47 (95% CI: 

2.0%, 44.8%) in TSH concentrations (computed from Table 3). For an interquartile range 

increase in ΣPBDE (i.e., to go from the 25th percentile (0.14 ng/mL) to the 75th percentile 

(0.44 ng/mL)), we estimated a 25.6% increase in TSH (95% CI: 2.3%, 56.0%). Results were 

nearly identical when we considered the molar sum (Table 3). Standardizing PBDE 

concentrations to the lipid basis did not meaningfully change our results (Supplemental 

Table 3). Although adjusted estimates are presented, most covariates in our models did not 

affect β-coefficient estimates by more than 10%. The most influential covariate was time of 

blood collection. Blood collections between 7-9am were associated with higher TSH 

concentrations compared with later collections (p<0.0001; data not shown).

In addition, children with higher serum concentrations of PBDE congeners and ΣPBDE 

showed a tendency toward lower total T4 and higher free T3 (Table 3 and Supplemental 

Table 3). Estimated differences in total T4 were smaller than differences in TSH: a log-unit 

increase in ΣPBDE predicted a decrease of 0.15 μg/dL (95% CI: -0.62, 0.33). Similarly, a 

log-unit increase in ΣPBDE was associated with an increase of 0.02 ng/dL (95% CI: 0.0, 

0.04) in free T3. Relative to the average total T4 of 8.97 μg/dL and average free T3 of 0.34 

ng/dL (Supplemental Table 2), these changes correspond to approximately a 1.7% decrease 

and a 5.9% increase in concentrations, respectively. Finally, a log-unit increase in ΣPBDE 

was suggestive of an increased odds of TgAb detection (adjusted odds ratio (aOR)=1.93, 

95% CI: 0.81, 4.62) (data not shown). We did not find significant or consistently suggestive 

associations between PBDEs and other thyroid parameters. We note that β-coefficients 
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cannot be directly compared between thyroid parameters due to the dramatic differences in 

distributions across measures (Supplemental Table 2). For example, the interquartile range 

for total T3 is 41.8 ng/dL and for free T3 is 0.10 ng/dL.

Analyses of PBDE congeners and ΣPBDE as quartiles yielded similar conclusions as the 

continuous log-transformed analyses (Table 4 and Figure 1). Compared with the first quartile 

of exposure for BDE-47, 99, and 100, exposure in higher quartiles was associated with 

greater TSH concentrations (Table 4). Modeling PBDEs on the lipid basis did not 

substantially change our results; the most notable difference was slightly stronger 

associations for BDE-100 (Supplemental Table 4). ΣPBDE concentrations were also 

associated with greater TSH (Figure 1 and Supplemental Table 5). Compared with children 

in the lowest quartile of ΣPBDE exposure, children in higher quartiles had greater TSH 

concentrations (β (for change in log TSH)=0.32, 95% CI: -0.09, 0.74, β=0.44, 95% CI: 0.04, 

0.85, and β=0.49, 95% CI: 0.09, 0.89 for the second, third, and fourth quartiles, 

respectively). In addition, quartile analyses showed a suggestion of lower total T4 and higher 

free T3 with increasing ΣPBDE exposure (Figure 1). Overall, associations between 

BDE-153 quartiles and most hormones were usually closer to the null than estimates for the 

other congeners (Table 4 and Supplemental Table 5).

Our results were robust to the exclusion of observations that had thyroid parameter 

concentrations outside of kit reference ranges, which are thresholds that would motivate 

further investigation into thyroid function in a clinical setting. Two children were outside the 

reference ranges for TSH (reference range=0.3-4 mIU/L; minimum=0.12 mIU/L and 

maximum=6.46 mIU/L). When excluded, the β-coefficients in models for TSH did not 

substantially change, although they attenuated slightly (data not shown).

4. Discussion

In this cross-sectional study of 80 young US children, serum concentrations of PBDE 

congeners (BDE-47, BDE-99, BDE-100) were associated with subclinical thyroid hormone 

changes, including higher TSH concentrations, and a tendency toward lower total T4 and 

greater free T3. BDE-47 and BDE-99 had the strongest associations with TSH, which also 

primarily drove the associations with ΣPBDE. These findings were consistent when we 

modeled PBDEs on the lipid basis, adjusted for potentially confounding variables, and 

excluded children who had TSH concentrations outside the clinically normal range.

Our results raise concerns about the public health impact of exposure to PBDEs. Although 

our findings suggest modest subclinical effects on thyroid hormone levels, increased TSH 

and decreased total T4 represent a physiologic pattern in the direction of hypothyroidism, 

which among infants and children can adversely affect brain development. Furthermore, 

although we did not observe an inverse association with free T4, which would also be 

expected in the case of hypothyroidism, our suggestive finding of increased free T3 may be 

physiologically consistent. In the hypothyroid state, the thyroid may attempt to compensate 

and convert more thyroid hormone to the most biologically active form, T3 (Bursell and 

Warner, 2007; Jameson and De Groot, 2010). Furthermore, although we found that PBDEs 

were associated with TSH, and potentially total T4 and free T3, it is possible that these 
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associations were not independent due to the thyroid’s negative feedback loop which results 

in functional relationships between hormones. For example, it may be that PBDEs affect 

total T4 directly, and that the increases in TSH may be secondary to this. Although the effect 

sizes for TSH were larger than those for total T4, this is also biologically plausible due to the 

extreme sensitivity of the pituitary thyrotroph, which leads to large changes in TSH in 

response to smaller changes in T4. Given our small sample size, it is possible we only had 

power to detect these changes in TSH and not the smaller changes in T4. The associations 

we observed were modest, particularly for total T4 and free T3, and may not be clinically 

significant. Despite this, it is important to interpret β-coefficients in the context of each 

parameter’s distribution because thyroid parameters are measured in different units and 

circulate in concentrations that vary by many orders of magnitude.

Thyroid hormone insufficiency in early childhood may lead to neurodevelopmental 

problems such as language and memory deficits (Zoeller and Rovet, 2004). Although 

maternal thyroid function during pregnancy is vital to fetal brain development, the postnatal 

period is also a critical time. Brain development after birth continues to rely on thyroid 

hormones until age 2, and is particularly related to cerebellar proliferation and myelination 

(Williams, 2008). However, it is not known whether subclinical variation in thyroid 

hormones has an impact on neurodevelopment, and further studies are needed in order to 

elucidate this potential relationship. Still, studies have found that PBDEs are associated with 

neurodevelopmental deficits in children (Eskenazi et al., 2013; Herbstman et al., 2010), and 

postnatal thyroid function alterations may be a mediating pathway. The high exposures 

among young children combined with their particular vulnerability to the deleterious effects 

of overt thyroid dysfunction highlights the importance of additional studies among this age 

group.

The distribution of serum PBDE concentrations in this cohort were similar to those found in 

other toddler cohorts in the United States (Sjodin et al., 2014b; Stapleton et al., 2012; Wu et 

al., 2015), which is one to two orders of magnitude higher than in other countries worldwide 

(Birnbaum and Cohen Hubal, 2006; Rose et al., 2010; Sjodin et al., 2008). Despite the high 

exposure burden among this age group, few studies assessing impacts on thyroid function 

have been conducted among children and adolescents (Gascon et al., 2011; Han et al., 2011; 

Kicinski et al., 2012; Leijs et al., 2012; Xu et al., 2014), and to our knowledge, this is the 

first conducted in the United States. However, despite the small number of published studies 

among this age group, there is some consistency with four of the five studies indicating a 

positive association between PBDEs and TSH.

Our findings of a tendency toward lower total T4 is supported by experimental studies in 

animals. Studies in rats, mice, fish, and birds have shown that PBDEs and specifically, 

BDE-47, induce decreases in total T4 (Darnerud and Thuvander, 1998; Fernie et al., 2005; 

Hallgren and Darnerud, 2002; Richardson et al., 2008; Stoker et al., 2004; Tomy et al., 2004; 

Zhou et al., 2002); and one study additionally noted increases in TSH (Stoker et al., 2004), 

which is specifically consistent with our results. These decreases in total T4 have been found 

to be associated with decreases in T4 binding to transthyretin, the main thyroid transport 

protein in rats (Hallgren and Darnerud, 2002). PBDEs and their metabolites have been 

shown to competitively bind to and replace T4 on these and other transport proteins 
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(Marchesini et al., 2008; Meerts et al., 2000). Decreases in total T4 were also associated with 

induction of hepatic microsomal enzymes, which increase metabolism and elimination of 

thyroid hormones (Hallgren and Darnerud, 2002; Richardson et al., 2008; Zhou et al., 2002). 

One study that exposed pregnant rats to PBDEs found that dams and their offspring had 

lower serum T4 concentrations compared with controls, and that these effects were most 

pronounced among offspring at postnatal day 14 (Zhou et al., 2002). These findings 

highlight the biologic plausibility for PBDE-induced thyroid hormone disruption in humans 

as well as the potential for early life as a critical window of exposure to PBDEs.

Although studies on PBDEs and thyroid function among adults have been inconsistent, one 

recent longitudinal study among office workers in Boston, MA found that PBDEs were 

associated with decreases in total T4 (Makey et al., 2015). Based on the toxicological 

literature, Makey et al. hypothesized that this observed decrease in total T4 could be due to 

either competitive replacement of T4 on transport proteins or a decrease in transport 

proteins. Although our results were modest and not statistically significant, we also observed 

a tendency toward lower total T4 levels. However, this hypothesis would have been 

additionally supported by increases in T3 uptake, which is a proxy measure of serum thyroid 

hormone binding capacity that quantifies the relative amount of hormone binding receptors 

on transport proteins that are unoccupied (Dunlap, 1990). If increased, this could signify low 

binding availability, which could occur if transport proteins were occupied by PBDE 

metabolites. In this study, we did not observe evidence that PBDE serum concentrations 

were related to T3 uptake.

Another potential mechanism of PBDE-induced thyroid disruption could be through 

interference with deiodinase activity (Noyes et al., 2010; Szabo et al., 2009). Deiodinases 

are enzymes that activate or deactivate thyroid hormones by removing an iodine atom from 

different locations on thyroid hormones, which alters their bioavailability to target tissues 

(Greer, 1990; Jameson and De Groot, 2010). Type 2 deiodinase is an activating enzyme that 

primarily converts T4 to T3, type 3 is deactivating and converts T4 to rT3, whereas type 1 can 

catalyze both activities. PBDEs and their metabolites have been found to alter deiodinase 

activity both in vitro and in vivo (Noyes et al., 2010; Szabo et al., 2009). One in vitro study 

exposed human hepatocytes to BDE-99 and found an association with up-regulation of type 

1 deiodinase, which results in increased conversion of T4 to T3 and/or rT3 (Stapleton et al., 

2009); thus potentially consistent with lower circulating T4 levels. However, a recent in vitro 

study with human astrocytes found that BDE-99 and BDE metabolites (3-OH-BDE-47 and 

5’-OH-BDE-99) were associated with decreased type 2 deiodinase activity (Roberts et al., 

2015), which would lead to decreased conversion of T4 to T3, and thus would not be 

expected to lead to decreased T4, although deiodinase activity in the brain, or in local tissue, 

may not affect circulating thyroid hormone levels (Bianco and Kim, 2006; Dentice and 

Salvatore, 2011; Kohrle, 1999).

In studies involving lipophilic chemicals, there has been considerable debate about how to 

statistically handle serum lipids (Chevrier, 2013; O’Brien et al., 2015; Schisterman et al., 

2005). Serum PBDEs expressed on the lipid basis (ng/g lipid) are correlated with the amount 

stored in body fat (Brown and Lawton, 1984; Hirai et al., 2012) and because PBDEs 

accumulate in lipids, this may be the most biologically relevant parameter for adjusting for 
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lipids; although it constrains the form of lipids into the denominator of the PBDE term 

(Schisterman et al., 2005). In contrast, expressing PBDEs on the wet weight basis (ng/mL 

serum) and controlling for lipids as a covariate allows for more flexible modeling and still 

accounts for serum lipids (Schisterman et al., 2005). Schisterman et al. considered different 

possible underlying causal scenarios of the relationship between polychlorinated biphenyls 

(PCBs), serum lipids, and a health outcome and showed through statistical simulations that 

expressing PCBs on the lipid basis induced more bias than controlling for lipids as a 

covariate (Schisterman et al., 2005). Based on these findings, in our primary analysis, we 

considered PBDEs on the volume basis and controlled for lipids as a covariate, although we 

also performed all analyses on the lipid basis, as well (Supplemental Tables 3-5). More 

recently, O’Brien et al. published a study similar to that of Schisterman et al. that concluded 

that modeling PBDEs on the lipid basis incurred less bias than other methods (O’Brien et al., 

2015). In our study, results did not meaningfully change when we considered both of these 

options.

This issue is further complicated by the complex relationship between lipids and thyroid 

function. Thyroid hormones regulate lipid metabolism and it has been shown that overt 

hypothyroidism is associated with increases in blood lipids and dyslipidemia (Duntas and 

Brenta, 2012; Pucci et al., 2000; Reinehr, 2010). However, it is unclear whether subclinical 

variation in thyroid hormones affect lipid levels, especially in children (Reinehr et al., 2006; 

Tagliaferri et al., 2001). If thyroid hormones do influence blood lipid levels, the potential for 

reverse causality must be considered (Chevrier, 2013). Greater TSH levels would be 

expected to be related to increased lipids, and thus greater PBDE concentrations on the wet 

weight basis, but lower levels on the lipid basis. However, if this scenario was operating, we 

might expect to observe different results when comparing the two analytical techniques for 

adjusting for lipids, which we did not. Furthermore, TSH and lipids were not positively 

correlated in our study (data not shown).

One major strength of this study was that we were able to measure an expanded panel of 

thyroid hormones and other markers such as T3 uptake and thyroid antibodies. We detected 

an association between time of day and TSH, consistent with its known diurnal pattern 

(Braverman and Cooper, 2012). In addition, the physiologically consistent results we 

observed with multiple hormones reduce the likelihood that our results are driven entirely by 

chance.

We suspect that the paucity of studies on this topic is due to the challenges in obtaining 

voluntary blood samples from individual young children for research. By obtaining consent 

from parents of children who were receiving general anesthesia, we were able to obtain 

blood samples from healthy young children with a 94% participation rate. We have no 

reason to believe that selection of this population threatened internal validity given that both 

PBDEs and thyroid hormones would have to be related to indications for myringotomy and 

related procedures in order to induce bias (Hernán et al., 2004). Furthermore, although we 

have no a priori reason to believe that associations between PBDEs and thyroid hormones 

are different among children receiving myringotomy compared to the general population of 

healthy children in the United States, it is possible that our results are only generalizable to 

those children with similar indications for these procedures. However, an estimated 500,000 
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children per year receive ear tube surgeries, usually as treatment for recurrent otitis media, 

making it the most common surgical procedure performed on children (Ah-Tye et al., 2001). 

Thus, even if results are only generalizable to these children, the public health impact could 

be considerable. Lastly, although the cross-sectional design of this study does not allow for 

causal inference due to lack of temporal sequence, PBDEs are extremely persistent in the 

environment (de Wit, 2002; de Wit et al., 2006; Ikonomou et al., 2002) and in human biota 

(Hites, 2004). Therefore, serum PBDE levels remain relatively constant over time and can 

reflect long-term exposure (Birnbaum and Cohen Hubal, 2006). Given that the children in 

this study were aged 1-5 years old, serum PBDE levels may reflect an integrated exposure 

metric over their lifetimes. Furthermore, because the outcomes of interest were subclinical 

as opposed to a disease state, this research question is well suited for the cross-sectional 

design.

Our study was limited by small sample size, and for certain hormones, this made it difficult 

to discern between potentially important subclinical changes and the influence of random 

error or multiple testing. This also limited our ability to evaluate potential effect 

modification, such as by antibody detection status. Another limitation was the relatively high 

analytical LOD for BDE-153 which led to lower detection of this congener (64%) in our 

study when compared with other studies among US toddlers (Sjodin et al., 2014b; Stapleton 

et al., 2012). However, our treatment of left-censored values due to the LOD using 

distribution-based multiple imputation was robust, and incorporated variability in the 

estimation of concentrations, avoiding underestimation of variance that can occur when 

using methods such as imputing the LOD/√2 (Chen et al., 2011; Lubin et al., 2004). 

Nonetheless, because a substantial proportion of samples was below the LOD for this 

congener, this could have been a reason that the associations with thyroid hormones were 

often not as strong as for other congeners.

Although PentaBDE and OctaBDE have been voluntarily phased out in the U.S. since 2004 

(Birnbaum and Cohen Hubal, 2006; Dodson et al., 2012), exposure to these compounds is 

still of concern. Because of their chemical stability in the environment and their typical use 

in durable goods such as furniture and electronics, PBDEs will likely remain in the 

environment for a long time (Sjodin et al., 2014a). Furthermore, other brominated flame 

retardants with similar chemical structures, such as tetrabromopisphenol A and hexabromo-

cyclododecane, are still being produced and are used as replacements for PBDEs (Birnbaum 

and Staskal, 2004). Therefore, this work may be relevant outside of exposure to these 

particular compounds, as PBDEs may serve as a model for exposure to these other flame 

retardants.

5. Conclusions

We found that PBDEs were associated with greater TSH concentrations in a cohort of young 

children in the southeastern U.S. There was also a suggestion of lower total T4, consistent 

with a physiologic pattern in the direction of hypothyroidism. This is the first study on this 

topic conducted among toddlers in the United States. Given that this age group is highly 

exposed to PBDEs and at a vulnerable life stage for neurodevelopment, these findings 
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highlight the importance of considering early life exposures in the context of critical stages 

of development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• First study in US children on polybrominated diphenyl ethers and thyroid 

function.

• PBDE serum levels were positively associated with thyroid-stimulating 

hormone.

• Suggestion of lower total thyroxine and higher free triiodothyronine.

• Subclinical disruption of thyroid hormones in the direction of 

hypothyroidism.
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Figure 1. 
β-Coefficients and 95% confidence intervals (95% CI) from regression modelsa for 

associations of total polybrominated diphenyl ether (ΣPBDE)b (ng/mL serum) with TSHc 

and other thyroid function parametersc

Abbreviations: TSH: thyroid-stimulating hormone; T4: thyroxine; T3: triiodothyronine.
aAll models adjusted for serum lipids, sex, age, race/ethnicity, breastfeeding history, time of 

blood collection, BMI z-score, and insurance type. β-coefficients and 95% CIs reported in 

Supplemental Table 4.
bSum of congeners with detection frequencies greater than 60% (PBDE-47, -99, -100, and 

-153). PBDE-100 and -153 were multiply imputed (n=10) based on a lognormal probability 

distribution whose parameters were determined by maximum likelihood estimation.
cInterpretations of β-coefficients can be found in the footnotes of Supplemental Table 4.

Jacobson et al. Page 17

Environ Res. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jacobson et al. Page 18

Ta
b

le
 1

D
is

tr
ib

ut
io

n 
of

 P
B

D
E

 c
on

ge
ne

r 
co

nc
en

tr
at

io
ns

 a
nd

 li
pi

ds
 in

 s
er

um
 s

am
pl

es
 o

f 
80

 y
ou

ng
 c

hi
ld

re
n 

re
cr

ui
te

d 
fr

om
 C

hi
ld

re
n’

s 
H

ea
lth

ca
re

 o
f 

A
tla

nt
a

P
B

D
E

 (
ng

/m
L

)
L

O
D

 (
ng

/m
L

)
P

er
ce

nt
 d

et
ec

ti
on

M
ea

na
,b

M
in

im
um

25
th

 p
er

ce
nt

ile
M

ed
ia

n
75

th
 p

er
ce

nt
ile

M
ax

im
um

PB
D

E
-4

7
0.

00
2

10
0.

0%
0.

15
0.

02
0.

09
0.

14
0.

26
2.

47

PB
D

E
-8

5
0.

00
5

11
.3

%
—

<
L

O
D

<
L

O
D

<
L

O
D

<
L

O
D

0.
06

PB
D

E
-9

9
0.

00
2

10
0.

0%
0.

04
0.

01
0.

02
0.

04
0.

07
0.

74

PB
D

E
-1

00
0.

00
2

83
.8

%
0.

02
<

L
O

D
0.

01
0.

02
0.

04
0.

48

PB
D

E
-1

53
0.

01
6

63
.8

%
0.

02
<

L
O

D
<

L
O

D
0.

03
0.

05
0.

30

PB
D

E
-1

54
0.

00
7

15
.0

%
—

<
L

O
D

<
L

O
D

<
L

O
D

<
L

O
D

0.
09

PB
D

E
-2

09
0.

10
0

0.
0%

—
<

L
O

D
<

L
O

D
<

L
O

D
<

L
O

D
<

L
O

D

Σ
PB

D
E

c
0.

25
0.

05
0.

14
0.

23
0.

44
4.

00

Σ
PB

D
E

 (
pm

ol
/m

L
)c

,d
0.

48
0.

09
0.

27
0.

44
0.

84
7.

73

L
ip

id
s 

(m
g/

dL
)

C
ho

le
st

er
ol

10
2.

8
10

.2
77

.7
10

1.
1

12
7.

9
26

2.
2

T
ri

gl
yc

er
id

es
12

7.
8

37
.2

10
0.

8
12

7.
4

14
0.

4
27

5.
3

To
ta

l l
ip

id
se

42
3.

4
20

0.
0

35
3.

4
40

3.
8

47
8.

1
78

8.
0

A
bb

re
vi

at
io

ns
: L

O
D

: l
im

it 
of

 d
et

ec
tio

n

a G
eo

m
et

ri
c 

m
ea

ns
 r

ep
or

te
d 

fo
r 

PB
D

E
 c

on
ge

ne
rs

 a
nd

 a
ri

th
m

et
ic

 m
ea

ns
 r

ep
or

te
d 

fo
r 

lip
id

s.

b G
eo

m
et

ri
c 

m
ea

ns
 n

ot
 c

al
cu

la
te

d 
fo

r 
co

ng
en

er
s 

w
ith

 d
et

ec
tio

n 
fr

eq
ue

nc
ie

s 
le

ss
 th

an
 5

0%
. B

D
E

-1
00

 a
nd

 -
15

3 
w

er
e 

im
pu

te
d 

ba
se

d 
on

 a
 lo

gn
or

m
al

 p
ro

ba
bi

lit
y 

di
st

ri
bu

tio
n 

w
ho

se
 p

ar
am

et
er

s 
w

er
e 

de
te

rm
in

ed
 

by
 m

ax
im

um
 li

ke
lih

oo
d 

es
tim

at
io

n.

c Su
m

 o
f 

co
ng

en
er

s 
w

ith
 d

et
ec

tio
n 

fr
eq

ue
nc

ie
s 

gr
ea

te
r 

th
an

 6
0%

 (
B

D
E

-4
7,

 -
99

, -
10

0,
 a

nd
 -

15
3)

. I
nc

lu
di

ng
 c

on
ge

ne
rs

 -
85

 a
nd

 -
15

4 
m

in
im

al
ly

 im
pa

ct
ed

 th
e 

su
m

.

d M
ol

ar
 s

um
 c

al
cu

la
te

d 
by

 d
iv

id
in

g 
ea

ch
 c

on
ge

ne
r 

by
 it

s 
m

ol
ec

ul
ar

 w
ei

gh
t, 

m
ul

tip
ly

in
g 

by
 1

,0
00

, t
he

n 
su

m
m

in
g 

co
ng

en
er

s.

e To
ta

l l
ip

id
s 

=
 (

2.
27

×
C

ho
le

st
er

ol
)+

T
ri

gl
yc

er
id

es
+

62
.3

 (
Ph

ill
ip

s 
et

 a
l. 

19
89

)

Environ Res. Author manuscript; available in PMC 2017 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jacobson et al. Page 19

Table 2

Total polybrominated diphenyl ether (ΣPBDE)a serum concentrations (ng/mL serum and ng/g lipid) by 

demographic characteristics in a population of young children recruited from Children’s Healthcare of Atlanta

Total Cohort (n=80) ΣPBDE (ng/mL serum) ΣPBDE (ng/glipid)

n (%b) GM (GSD) GM (GSD)

Sex

 Female 35 (43.8) 0.32 (0.05) 77 (11)

 Male 45 (56.3) 0.20 (0.02) 51(6)

Age (years)

 1 11 (13.8) 0.36 (0.13) 89 (31)

 2 23 (28.8) 0.23 (0.03) 54 (8)

 3 20 (25.0) 0.29 (0.05) 68 (11)

 4 13 (16.3) 0.17 (0.03) 45 (10)

 5 13 (16.3) 0.26 (0.06) 60 (16)

Race/Ethnicity

 Black 33 (41.3) 0.30 (0.04) 74 (8)

 White 31 (38.8) 0.23 (0.04) 57 (10)

 Other 16 (20.0) 0.20 (0.04) 45 (8)

Breastfeeding history

 Not breastfed 33 (41.3) 0.29 (0.05) 67 (11)

 <6 months 21 (26.3) 0.21 (0.03) 54 (7)

 ≥6 months 26 (32.5) 0.23 (0.04) 58 (10)

Time of blood collection

 7-9 am 23 (28.8) 0.20 (0.03) 49 (8)

 9-12 pm 33 (41.3) 0.26 (0.04) 63 (8)

 12-3 pm 24 (30.0) 0.29 (0.05) 71 (13)

BMI z-score for agec

 < 0 27 (33.8) 0.31 (0.05) 75 (12)

 ≥0 - ≤1 24 (30.0) 0.23 (0.05) 54 (11)

 > 1 29 (36.3) 0.22 (0.03) 56 (6)

Insurance type

 Medicaid 51 (63.8) 0.26 (0.03) 63 (7)

 Private 29 (36.3) 0.22 (0.04) 57 (9)

Parental smoking

 Yes 14 (17.5) 0.26 (0.07) 68 (19)

 No 56 (70.0) 0.23 (0.03) 56 (6)

 Missing 10 (12.5) 0.35 (0.09) 86 (17)

Abbreviations: GM: geometric mean; GSD: geometric standard deviation

a
Sum of congeners with detection frequencies greater than 60% (BDE-47, -99, -100, and -153). BDE-100 and -153 were imputed based on a 

lognormal probability distribution whose parameters were determined by maximum likelihood estimation. ΣPBDEs in this table are based on a 
single imputation.

b
Percentages may not sum to 100% due to rounding.
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c
BMI z-score based on the CDC 2000 standards for children 24 months or greater, and for children less than 24 months (n=10), BMI z-score was 

imputed based on the difference between CDC standards and WHO standards at age 24 months.
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